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A Complete Axiomatization of Computer Arithmetic 

By Richard Mansfield 

Abstract. We define an axiom system for rounded arithmetic to be complete if we can recover 
from any model of the axioms the exact algebra from whence it came. A complete set of 
axioms is given for rounded addition and multiplication. 

In some circles of numerical analysis, there is a deep suspicion that some of the 
scientific and engineering calculations being done by computer do not correspond to 
external reality. One cause of this unease is that computer arithmetic itself can be 
inexact. For example, we all know that ((a + b)2 _ (a2 + 2ab))/b2 is one, yet, in 
IBM single precision with a = 100 and b = .01, the result is around 39. In addition 
to this unavoidable consequence of rounding, it is also a sad fact that not all 
floating-point packages are free of mistakes. The addition routines on both the 
UNIVAC mainframe and the TRS-80 Color Computer (and probably many more) 
contain serious bugs. It is depressing that commerical incentives do not exist for 
manufacturers and firmware suppliers to improve their product. 

One method for dealing with some of these problems is to establish mathematical 
definitions of just what floating-point arithmetic should do. The IEEE has proposed 
standards incorporating such definitions, thus providing the computer industry with 
a scale against which it can measure its efforts. It is also hoped that, by formulating 
mathematical laws concerning computer arithmetic, we can produce a theory which 
will allow a greater degree of justified confidence in actual computations. The theory 
has not as yet progressed to the stage of having such useful implications. 

Knuth [1, p. 214] has given some laws for the algebra of computer arithmetic. 
Kulisch and Miranker [2] have carried out the project in more detail. Kulisch and 
Miranker also give efficient algorithms conforming to the IEEE standards. Neither 
of these sources consider the problem of giving a complete axiomatization. 

There are two causes of inaccuracy in computer arithmetic, rounding and over- 
flow. In this preliminary research, I propose to simplify the problem by pretending 
that overflow does not exist. One justification for this is that overflow generally 
occurs rarely and when it does happen, the programmer is usually informed with a 
warning message. Rounding, on the other hand, occurs silently and invidiously on 
nearly every step of a numerical calculation. Future research will deal with combin- 
ing the two sources of error. Within this limitation we will produce a complete 
axiomatization of rounded floating-point arithmetic. Of course, if any of this work is 
to be useful, the axioms should be simple enough for each comprehension. I am 
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afraid that this goal has not yet been achieved. We are instead bound by Einstein's 
maxim, "Be as simple as possible, but no simpler." 

Let R be an ordered field. A rounding function on R is a monotone projection, 
i.e., a function 0 mapping R into itself such that 

0(0(x)) = O(x), 

x < y implies O(x) < 0(y), 

0(0) = 0: 0(1) = 1: 0(-x) = -O(x). 

Let S be the range of 0 and let + + and * * be the field operations of addition and 
multiplication. We can define corresponding operations on S by means of the 
equations, 

x +y = 0(x + +y), x*y = 0(x* *y), 

for all x and y in S. The field R also bequeaths its order relation to S. 
The goal of this research is to give a complete set of axioms for the ordered 

algebra S. In logic the word complete has two standard meanings. In one sense, an 
axiom system is complete if it either proves or refutes every formula in a given 
language. This is not what is meant here. In our sense, an axiom set is complete for a 
given concept if it completely defines the concept as, for instance, the group axioms 
define the concept group. Some concepts such as "finite" or "Archimedian" are not 
axiomatizable. Our axioms will be complete in the sense that any model S for the 
theory can be extended to an ordered field with a rounding function as defined 
above. In other words, the above paragraphs define a model class, the class of 
rounded algebras, and we propose to axiomatize that class. Actually we start with a 
method for reconstructing the field from the algebra and then invent axioms to 
prove theorems we already know to be true. 

Our decision to sweep overflow under the rug determines our choice of the 
standard model for the theory. The intended model is to let S be the set of real 
numbers expressible with a mantissa of some fixed finite precision but an arbitrary 
integer exponent, e.g., all reals of the form m * 2' where n is an arbitrary integer but 
m is an integer of absolute value less than 224. The rounding function 0 is the 
standard rounding to the nearest screen point with the proviso that a number exactly 
half way between two screen points will not be hung up like the famous donkey but 
will round to the nearest odd mantissa. This condition is given in order to simplify 
some of our axioms. Using the convention, "When in doubt round up" would better 
conform to actual hardware but would further complicate an already complicated 
axiom set without requiring any new ideas. It is commonly believed that IBM uses 
truncation rather than rounding, but I am convinced that this is not so, at least for 
addition and subtraction. If hex 8 is used for the padded guard digit, IBM's method 
gives ordinary rounding. The role of the standard model in the ensuing theory is the 
central one of guarding the consistency of the axioms. All the axioms are meant to 
be true of this model. Of course this can easily be considered more of a hope than a 
guarantee. So far all the false axioms have proved to be correctable, some with more 
difficulty than others. In any list of over forty axioms there is bound to be some 
errors. 
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Our plan is to first introduce axioms for the reconstruction of the additive group. 
Then further axioms will be introduced for multiplication and division. Our first 
group of axioms is essentially that of ordered groups without associativity. Remem- 
ber that in all that follows + and * are the operations on S, and that these axioms 
refer to S. 

1. x+y-=y+x, 
2. x < y implies x + z < y + z, 
3. x < y implies -y < -x, 
4. x sy < zimpliesx < z, 
5. x <y ximpliesx =y, 
6. x+0=x, 
7. x+ (-x)=0. 

A crucial fact about the standard model is that there is a function r+(x, y) 
mapping S into S such that 

r+(x, y) + + (x + y) = x + + y. 

In fact Knuth [1, Theorem B, p. 220] proves that r+(x, y) is definable in the 
standard model. Let x' = (x + y) - y and let y' = (x + y) - x'. Then Knuth 
proves that 

r+(x, y) = (x - x') + (y - y'). 

Note the lack of symmetry in the definition. In spite of this r+ must be commutative 
since both + and + + are commutative. We shall use the notation r(x + y) for 
r+(x, y), i.e., in the expression r(x + y), we consider x, y, and + to be separate 
variables. The main task before us is to axiomatize this function without reference to 
any structure external to S. 

Definition. 

x?<y iffx+y=y, 
x?y if x?<<yor 

(y - 0 and there is a z such that (r(y + z) = 0 and x <<< z)). 

In the standard model, x ?< y pretty much means that the most significant digit of x 
is at least 25 places less significant than the most significant digit of y. The 
exceptions occur when either x or y is a power of 2. The relation x << y means that 
even though x + y may be unequal to y, the sum x + y does not change any digits of 
y, it just appends more digits to the least significant end of y. In other words, the 
nonzero digits of x and y do not overlap. This is similar to the relation defined by 
Kulisch and Miranker [2, p. 292]. 

Here are some more axioms. 

8. r(x + y) = r(y + x), 
9. x << y < z implies x << z, 

10. x <am y ?< z implies x << z, 
11. r(x+y)?<ax+y, 
12. 0 < y < z and x <<<y implies x <a z, 

13. x <am y and lul < Ixl + Ivl implies lu + xI < IyI + lv|, 
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14. x <yandO <yimpliesO <x +y, 
15. x << y and x << z and r(y + z) * 0 impliesx << r(y + z), 
16. x << y and x << z andy + z * 0 implies x << y + z, 
17. x << z ory << z implies r(x + y) << z, 

18. y?<azandz?<axandx > 0andJul<jyj+lzl implies(u +y) +x > 0, 
19. u <am v <<< x implies u <<< w or w <<< x. 

Axioms 15-17 summarize Lemma 6.1 of Kulisch and Miranker [2, p. 293]. There are 
more axioms, but they cannot be conveniently stated without further notation. 

Now let (S, < , +, -) be a model for these axioms (including the several axioms 
not yet stated). Our main theorem is that S can be extended to an ordered group 
with a rounding function onto S. Let us begin the reconstruction of this group. From 
the standard model we will recover the dyadic rationals, i.e., those rationals whose 
denominator is a power of two. By a freak of nature, this does not turn out to be a 
field. In general, we must consider the set of all finite sequences from S factored by 
the equivalence relation of having the same exact sum in the extended group. Our 
problem is to define this relation without reference to any structure external to S. 

A sequence (x0,..., xn) of elements from S is in normal form if, for all i < n, we 
have xi+ I <am xi, and it is in weak normal form if for all i < n either x,+ I is zero or 
Xi+I << x,. Weak normal form is an auxiliary concept used solely on the road to 
normal form. In the standard model, a normal form is completely determined by its 
exact sum, since x0 = 0(s), x1 = 0(s - xo), etc. Now consider an arbitrary se- 
quence (x0,..., xn). If we replace the pair xi, xJ by the new pair x, + xj, 
r(xi + xj), then the exact sum is unchanged. The principal theorem of this research 
is that such reductions can always be used to reduce an arbitrary sequence to normal 
form, and that the normal form achieved is independent of the particular sequence 
of reductions used to derive it. It is even independent of the order of the original 
sequence. This result will follow solely on the basis of explicit first order axioms for 
S and will not require any external structure. However, by the external considera- 
tions just discussed, we already know it to be true in the standard model. Existence 
will follow from a modification of the Bohlander algorithm presented by Kulisch 
and Miranker. 

Let us denote the single reduction on the pair x,, xj by R,J. Using a right-hand 
function notation, this means 

( 
- 
**Xi 

.. 
x* 

.. XJ** RIJ ...** xi + xi 
... r(x, + Xi) *.**.) 

We then use the notation RS to mean first do R then do S. A derivation D is a finite 
product of reductions. We must prove two things: for every finite sequence s there is 
a derivation D such that sD is a normal form, and further that if sD and sD' are both 
normal forms then sD = sD'. 

Let us begin with three element sequences. Let Ek = Rk I,k * Rk2k - 
* * ROl and let Dn = E1 * ... * En. We claim that for all x, y, z, (x, y, z)D2 is 
a weak normal form. To see this let us draw some pictures. We employ the picture 
x <- y to mean that either x = 0 or y << x. This picture is to be interpreted 
transitively even though the relation it represents is not transitive, i.e., x <- y <- z 
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implicitly asserts x <- z. We start with three unrelated points. 

Do Rol and read axiom 1 1. Get 

Then R 2 with axioms 11 and 17 yield, 

Then Rol again and axioms 11, 15, and 16 yield, 

Let us now investigate the process by which three element weak normal forms 
may be converted into normal forms. In the first case, it is obvious that if any of the 
three elements are zero, another pass with E2 will produce a normal form. So 
suppose x >>> y >> z is the weak normal form produced by the above process and 
that x, y, z are all nonzero. If x >>> y + z, then one application of R12 produces 
normal form. The only way that x ?> y + z can fail is that y is exactly halfway 
between x and its immediate neighbor and that z has the same sign as y. In that case, 
after doing R12, an application of Rol changes x to its neighbor and changes the sign 
of y + z while decreasing its absolute value. In other words an application of E2 
leaves nearly the same situation as we started with except that y is no longer exactly 
halfway between x and its neighbor. Thus another application of RJ12 produces 
normal form. We can summarize this with an axiom: 

20. D2E2Rl2R0l = D2E2RI2. 

By the above discussion, this axiom implies that if ( x, y, z) is a weak normal form 
then (x, y, z)E2R12 is a normal form. 

In the standard model, the normal form is unique. This implies that R12D2 E2 R12 
= D2E2R12 since s and sRi12 have the same normal form. We also know that if 
X? <t xi then R,j has no effect on the sequence. This follows directly from the 
definition of r given by Knuth. We have another axiom: 

21. R12D2E2RI2 = D2E2RI2. 

This implies the uniqueness of normal form for three element sequences. For if sD is 
a normal form, then sDR = sD. Thus sDD2 = sD. On the other hand, axiom 21 
implies that sDD2 = sD2, so we see that sD2 is the only normal form for s. 

We now turn to the general case, s = (x0,..., xn). The outline of this case is 
exactly the same as the three element case. To prove the first step that sDn is a weak 
normal form, it clearly suffices to prove that if ( x0,..O., xn) is a weak normal form, 
then for any xn+1, (x0,..., Xn, xn+I)En+I is also a weak normal form. This easily 
follows from a Pacman argument. We start with the picture, 

* * ** 
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This picture will be successively transformed through the following sequence by 
En+ 1: 

* * * * 

(See axioms 11, 15, 16, 17.) 
Let us now examine the process by which weak normal form is converted into 

normal form. Define Dn, similarly to Dn except that in Dn, each Ek is done twice, i.e., 
Dn, = El E22 En2. The next lemma says that if s is a weak normal form of length 
n, then sDn' is a normal form. 

LEMMA. If (xo,..., xn) is a normal form and xn+I << xn, then 

(xO I... I Xn Ixn+ I)En+ En+ 1 is a normal form. 

Proof. Let us setxn+I = u, and xn = x, and xn =y, and xn-2 = z. If u + x <avy 
or even if (u + x) + y <?< z, the lemma easily follows from the above discussion of 
three element sequences. In the standard model, the remaining case is somewhat 
special. We must have that u, x, y all have the same sign and u is a power of two and 
y is all ones and x, y, z are nestled together as close as possible. In that case we can 
prove the following two axioms by simple arithmetic. 

22. u << x <<< y <<< z implies (u + x) + y << z, 

23. u << x <<< y << z implies r((u + x) + y) <<< 

r(((u + x) +y) + z). 

These two axioms clearly say that the lemma now follows by induction from the case 
n = n - 2. 

There is now a standard method for reducing any sequence to normal form. If s is 
a sequence of length n + 1, then sDnDn' is a normal form. We must now show that 
this normal form is unique, i.e., that any other sequence of reductions leading to a 
normal form must produce exactly the same result. This requires several lemmas. Let 
us define two weak normal forms, s and t, to be equivalent if there is a sequence of 
weak normal forms sO,..., ,Sn with so = s and Sn = t and having the property that for 
i < n, si and si+ l differ at only two consecutive places and at those places they have 
the same sum and same residue, i.e., for i < n there is a j such that si Rj1 +I = 
si + IR1 + 1. We first show that if s is a one-step reduction of t (i.e. s = tRi ,+ 1) then 
sDn and tDn are equivalent weak normal forms. Since this proposition is already 
known to be true in the standard model, we can postulate its truth for sequences of 
length less than five-. 

24. R34D4D = D4DA 

LEMMA. If x + y = x' + y' and r(x + y) = r(x' + y') and (xo,..., xn) is a weak 
normal form, then (xo,..., xnl x,Iy)En+lEn+2 and (xO,..., xIx', y')E +IEn+2 
are equivalent weak normal forms. 
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Proof. The pictoral representation of ( xO,..., xn, x, y) is 

* <- * - * 4- 

The first step of En+1 yields 

* * * 4 -*. 

a b c d 

At this point we should add a to b, continuing the application of En+ 1 but En+ l will 
never again alter the value of c. Thus we may as well do the first step of En+2 before 
proceeding with En+ . This gives 

* - 4- * * *= 4-: 

We must now continue with the next step of En+ 1, but again this can be immediately 
followed by the next step of En+2. This advances the double pincer to 

* .- . - . 4-. 

Continuing, we see that (x0,..., xn, x, y) can be reduced to 

~~~~4- * 4- * 4 - 

Xo Yi Y2 Y3 Y4 Y5 

where the value xo has not yet been altered. Similarly, (xOK...., xn, x y') can be 
advanced to 

* 4- * *4*- 

Xo Yi Y2' Y3' Y4' Y5' 

By the inductive hypothesis, we may assume that (Yi + Y2, r(y, + Y2) Y3,... ) is 
equivalent to (y' + y2, r(y + y2),y3,...). In both cases we are supposed to 
proceed by applying Ro0R12RO1 However by axiom 24, we get equivalent results 
using R12Ro0R12RO instead. First doing R12 has the effect of producing 

* * 4 * 4- * 4- * 4- 

Xo ZI Z2 Z3 Z4 Z5 

and similarly for (xo, zl, Z2,...), where our inductive hypothesis says that 

(Z1,.., Zn+2) and (zi,..., Zn+2) are equivalent weak normal forms. Both of these 
sequences are to be reduced with RoIR12RO. We must show that the results are 
equivalent. We may as well assume that (Zi ... zn+2) and (Z, ... Z+2) are 
immediately equivalent, that is to say, we may assume that they differ at only two 
consecutive places, etc. If z1 + Z2 = Z' + z2 and r(z1 + Z2) = r(z, + Z2), then axiom 
24 again implies that the results are equivalent. Thus we may as well assume that 
Zk = Zk for k = 1,4,5,... and that Z2 + Z3 = Z' + z' and r(z2 + Z3) = r(z' + z3). 
Then axiom 24 again says the results are equivalent. 
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LEMMA. If s = (xo,..., x,) and t = (x',..., x') are equivalent weak normal 
forms, then (s, x)En+ 1 and ( t, x)En+1 are also equivalent. 

Proof. As usual,we may as well assume that s and t differ at only two consecutive 
places, etc. We may also assume that x n xn or xn - I Xn-, for otherwise the 
inductive hypothesis would be immediately applicable. Therefore xo = x4. Now in 
both cases perform all but the last step of En 1 to get 

XO0 YI Y2 Y3 Y4 Y5 

and 

XO0 y, I Y2 Y3 YV4 Y5 

By the inductive hypothesis, ( Y n yn +1) and K y n+l) are equivalent weak 
normal forms. Now we proceed just as in the last lemma. Namely, again we may 
assume that these two sequences differ at only two consecutive places, etc., and then 
apply axiom 24. 

The next step in our argument is to prove that two equivalent weak normal forms 
have the same normal form. This is true in the standard model, so we can use any 
special cases as axioms, i.e. 

25. If s is a weak normal form of length 5, then sD4 = sR34D4. 

LEMMA. If s and s' are equivalent weak normal forms of length n + 1, then 
sDI = s'Dn. 

Proof. The proof is by induction on n. In the first place, we may as well assume 
that s and s' differ at only two consecutive places and at those two places they have 
the same sum and same residue. In fact, we may as well assume that they differ at 
only the last two places and prove that sE2_ IEn2 = s'En_1 En. Imagine the partial 
completion of these reductions on s. First do all but the very last step (R0 1) of En - I 
Then since Rol only changes xo and xl, we may begin the application of the second 
En- , doing all but the last two steps (R12Rol). Now do all but the last three steps of 
the first En and all but the last four steps of the final En. Do the same thing to s'. We 
now have two sequences, t and t', with the property that 

sE,2_lE,2 = tRolRl2RolR23Rl2RolR34R23Rl2Rol 

and similarly for s' and t'. By the inductive hypothesis and our assumption that s 
and s' have the same first element, if we leave out the Rol reductions, t and t' will 
give equal results. Therefore the sequences t and t' are equal from coordinate 5 on 
and the first five terms are equivalent. From axiom 25, we already know that normal 
form is unique for sequences of length 5. Thus the lemma is proven. 

THEOREM. Every finite sequence from S can be reduced to normal form with 
reductions of the form Ri1 and the normal form achieved is independent of the 
particular sequence of reductions used as well as the order of the original sequence. 
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Proof. The last three lemmas easily imply that normal form can be achieved with 
reductions of the form R 1I+ and that provided just these reductions are used, the 
normal form is unique. This in turn implies that the normal form is independent of 
the order of the original sequence since the reduction R1 ,+I obliterates the transposi- 
tion (i, i + 1) and every permutation is a product of such transpositions. As a 
consequence of this we can also remove the restrictionj = i + 1. 

Having completed the proof of the normal form theorem, we can now define the 
reconstructed group. 

Definition. For s and t finite sequences from S, 

s + + t = s concatenate t, 
0(s) = the dominant term of the normal form, 
s is positive iff 0(s) > 0. 

The normal form theorem implies that + + is well defined with respect to the 
equivalence relation of having the same normal form. Our next task is to verify the 
axioms of ordered groups. The group axioms follow immediately from the defini- 
tions and the normal form theorem and can be left to the reader. What we have left 
to show is that the sum of positives is positive and that 0 is order preserving. 

LEMMA. If (y, Y, Yn) and (y, x, *... , Xm) are both normal forms and y > 0, 
then (Y, Y15-5 Yn xl ... 5 Xm) is positive. 

Proof. The proof is by induction on m. Let s = ( Y, Y' .. ,Yn m xl)En+ 1. Then s is 
a weak normal form and axioms 13 and 18 say it has a positive leading term. In 
order to apply the inductive hypothesis, we need to know that xl <<c 0(s). The 
problem is that even though axioms 13 and 18 give a good handle on the leading 
term of s, they do not say as much about 0(s) because s is merely a weak normal 
form, not a normal form. We do know that the second term of s is <<c the leading 
term. What is needed, therefore, is an axiom saying that the leading term of such a 
weak normal form does not change much on reduction to normal form. But how can 
it change at all? The axiom x << y <<< z implies x + y <<< z is almost true. The only 
exception occurs when x and y have the same sign and y is a power of two nestled as 
close as possible to z. In that case (x + y) + z is either the immediate predecessor or 
immediate successor of z depending on the sign of y. We can entirely summarize the 
state of affairs with the following axioms: 

26. Every nonzero element has an immediate predecessor and 
an immediate successor, but zero has neither. 

27. x < y <<< z andy < 0 implies (x + y) + z = z or (x + y) + 
z is the predecessor of z. 

28. x < y <<< zandy > 0implies(x +y) +z = zor(x +y) + 
z is the successor of z. 

29. x < y << zimplies(x +y) + z = zorr((x +y) + z) and 
y have opposite signs. 

With these axioms it is easily proven that if s is a weak normal form with second 
term <am its leading term, then 0(s) is at worst the successor or predecessor of its 
leading term. Thus the fact that we want xl <a< 0(s) can now be easily formulated 
as an axiom. 
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30. Y <<<yoandxo<<<yoand0 <yoand Iu< ,I +IxoI and 

xl <<< x0 implies xl <<< both the successor and predecessor of ( u + Yi ) + Yo. 

Our goal is to prove two things: that the sum of positive elements is positive and 
that 0 is order preserving. Both these goals are accomplished by the next lemma. 

LEMMA. If 0 < 0(s) + 0(t), then s + + t is positive. 

Proof. Let s = (x0,..., xn) and t = ( YO ...,Ym) be normal forms. If x0 <<<Yo, 
then the previous lemma is applicable and the present lemma is proven. Therefore, 
by axiom 19, we may assume that Y2 <<< xo. What we propose to do is to let 
t= s + + (xo) and s' = x..., xn) and prove 0(s') + 0(t') is also positive. The 
lemma would then follow by induction on n. To this end, let us first decompose t 
into (yY, Y1) + + (Y2, .., Ym). Let (zO, zI, z2) be the normal form for 
(Yo, Yi, x0). In the standard model, we know that xl + z0 is positive. The problem 
with just formulating this as a new axiom is that (z0, z1, Z2, Y2,... , Yn) is not 
necessarily a normal form. Quite possibly the value z0 may be changed during the 
reduction to normal form. We must formulate an axiom which guarantees that this 
changed value still has z0 + xl positive. Let us note however that since Y2 <<< x0 the 
above sequence, ( z0, 1, Z2, Y2I . ., yn), is a weak normal form. Most of the time z0 
will have a nonzero digit at least as significant as the least significant digit of x0. In 
that case, no matter how the reduction to normal form goes, it cannot change the 
sign of z0 + xl. The only border line case is when x0 is a power of 2, and yo is the 
negative of its successor, and y, is a po~wer of 2 nestled as close as possible to y, with 
the same sign as x0. In that case, (x0 + Yi) + yo = 0, so that z0 = -Yi, z, = 0, and 

Z2 = 0. But then Y2 <<< z0 and z0 does not change at all. Based on this discussion, we 
can easily see that the following axiom proves the lemma: 

31. If xl <<< x0 andy, <<<y0 and 0 < x0 + y0 and z = 0(yo, y1, xo), 

then either (xO +YI) +yo = 0andr((x0 +yl) +yo) = -Yi or for 

any u << z and any neighbor z' of u + z, we have xl + z' is positive. 

THEOREM. If (S, A , +, -) satisfies axioms 1-31, then there is an ordered group 
G extending S and a rounding function 0 defining S. 

We now turn to the problem of making the extended group into a field. Our plan 
is to first introduce axioms for multiplication which allow us to add a multiplication 
operation to G obtaining an integral domain. We will then add axioms for division 
which will allow us to extend the function 0 to the fraction field. We begin with the 
obvious axioms. 

32. xy=yz, 
33. x <yand0 < zimpliesxz <yz, 
34. xy = 0 implies x = 0 ory = 0, 
35. xl=x:xO=0, 
36. - (xy) = (-x)y = x(-y), 

37. (x + x)-x = x, 

38. x <<< y implies 8IxzI < lyIZ. 
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In axiom 38, we use the notation 2x = x + x, 4x = 2x + 2x, 8x = 4x + 4x. Axiom 
37 says that there is no error in these calculations, i.e., r(x + x) = 0. 

We need a residue function r * for multiplication. Since the product of single 
precision numbers is exactly representable in double precision, there is no problem 
with the existence of this function. However I do not as yet know of a definition of 
r * similar to Knuth's definition of r +. We must therefore use r * as a new primitive. 
In the standard model, it is defined via the equation, 

r*(x, y) + + xy = x * * y. 

We use the notation r(xy) for r*(x, y). This leads to anomalies such as r(x(y + z)) 
for r *(x, y + z), but it seems better than the alternatives. Just like addition, our 
main task is to axiomatize this function. Here are some more trivial axioms: 

39. r(xy)<<<xy, 

40. r(xl) = r(xO) = 0, 
41. r((-x)y) = r(x(-y)) = -r(xy), 

42. 8|r(xy)l < Ixyl. 

The definition of s * * t forces itself upon us. 
Definition. 

s * * t = a sequence of all terms of the form xy or r ( xy) such 
that x is a term from s and y a term from t. 

We need not specify order in this definition since the normal form theorem implies 
that it is irrelevant. The next axiom says that this operation is well defined with 
respect to the equivalence relation of having the same normal form. 

43. (xz, r(xz), yz, r(yz))D3D' = 

((x + y)z, r((x + y)z), r(x + y)z, r(r(x + y)z))D3D'. 

This axiom says that doing a reduction before a multiply does not change the 
equivalence class of the result. The distributive law follows immediately from the 
definitions, but the associative law needs a new axiom. 

44. ((xy)z, r((xy)z), r(xy)z, r(r(xy)z))D3D' = 

(x(yz), r(x(yz)), xr(yz), r(xr(yz)))D3D'. 

All that is left to complete the integral domain verification is to show that the 
product of positives is positive. This will incidently establish that st = 0 implies 
s = 0 or t = 0. 

LEMMA. If s = (xO,..., xn) is a normalform, then 1Ky)sI < 2IyxoI. 
Proof. WS = (y)(xO) + + (y)<Xl,..., Xn) = (yXO) + + (r(yxo)) + + 

KYy) x(,..., xn). Therefore, we may take absolute values and apply axioms 37, 38, 
42, and the inductive hypothesis to get 

IKy)sI Iyxo) I+ +IKyxo)I 2I= yxo)I. 



634 RICHARD MANSFIELD 

In the future, we will not even attempt to put < ) around singletons. The reader will 
have to decide from context whether or not an element from S is being used as a 
singleton sequence in G. 

LEMMA. If s = (xo, . . . Xn) and t = y n, y,Y) are normal forms, then IstI < 

41xoyol. 

Proof. As in the previous lemma. 

LEMMA. If s and t are positive, then so is st. 

Proof. This proof actually involves the summation of a geometric series. Let 
s = <x0, Xn,) and t = yo, . . ., yn) be normal forms with x0, y0 > 0. Then 

st = (x0)<y0) + + (x0)y1, .., Yn) 
++ +yO)xl,..., Xn) + + (XI, Xn)<Yl Yn) 

Thus st is at least as large as 

x0y0 - Ir(x0y0)I - 2IxoylI - 2Ixlyol - 41x1yj1I 

Let z = max(Ir(xoyo)l, 21x0yll, 21xly0l, 41xlyll). By axioms 37, 38, 39, 4z < Ixoyol, 
but st is at least as large as Ixoyol - 4z. This proves the lemma and completes the 
proof of the following theorem: 

THEOREM. If the algebra (S, A , 0, 1, +,-, *, r*) satisfies axioms 1-44, then 

there is an ordered integral domain extending S and a rounding function 0 defining S. 

Our final step is to extend 0 to the fraction field of this integral domain. We shall 
do this not by adding division as a primitive to S, but rather by adding enough 
axioms so that division can be defined from multiplication. A preliminary definition 
of x/y would be the largest z such that zy < x. If the rounding were truncation, this 
would be the final definition as well. We must give first order axioms to guarantee 
the existence of such a largest element. The obvious approach of postulating that 
every bounded set has a least upper bound has the disadvantage that it is not a first 
order axiom and so would require a whole new set of axioms for set existence, thus 
opening us to the supplications of various snake oil salesmen with their bottles of 
measurable cardinals, etc. 

Axiom 26 in itself does not guarantee the existence of the largest z such that 
zy < x. We must somehow postulate the existence of a finite interval (zI, Z2) such 
that z1y < x and z2Y > x. Let x and y be arbitrary positive elements from S. Let 
x + dx be the successor of x and let y - dy be the predecessor of y. In the standard 
model we seek an upper bound for the number of screen points in the interval from 
x/y to (x + dx)/(y - dy). Let z = x/y and let dz = (x + dx)/(y - dy) - x/y. 
From Taylor's theorem, 

Idz/zl < Idx/x + dy/yl 

+Idx/x + dy/yl ly2/(y - dy)2 ldy/(y - dy)j. 

We also know that Idx/xl is between 2-24 and 2-23. The same for dy/y and 
dy/(y - dy). Thus 

Idz/zl < 2-22(1 + 2-22) 
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Thus we see that at most five screen points can fit in between z and z + dz. We can 
formulate an axiom summarizing the foregoing. 

45. If x and y are both positive and x + dx is the successor of 
x and y - dy is the predecessor of y, then there exist z1 and 
z2 such that z1y < x and z2(y - dy) > x + dx and there are 
at most five points strictly between z1 and Z2. 

LEMMA. For any two positive sequences s and t from G, there is a largest screen point 
z such that (z)t < s. 

Proof. Choose x and y so that x and x + dx straddle s and likewise for y, y - dy, 
and t. 

Definition. 

Tr(s, t) = the largest z such that (z)t < s, 

Tr' (s, t) = the successor of Tr(s, t). 

The function Tr is of course the truncation of s/t. Obviously, st' < s't implies 
Tr(s, t) < Tr(s', t'), i.e.,Tr is defined and order preserving on the fraction field, but 
it does not extend 0. 

Definition. O(s, t) = Tr+(s, t) if there is a z such that z <<< Tr+(s, t) and 
(Tr+(s, t), z)t < s, and O(s, t) = Tr(s, t) otherwise. 

LEMMA. If st' K s't, then O(s, t) < O(s', t'). 

Proof. In view of the fact that Tr and Tr' both satisfy this condition, it suffices to 
consider only the case when Tr(s, t) = Tr(s', t'). This case follows easily from the 
definition. 

As a corollary to this lemma we may conclude that 0 is defined on the fraction 
field and is order preserving. All that is left to show is that O(s, 1) = 0(s). But 
again this is an immediate consequence of the definition. Thus we have concluded 
the proof that has occupied the last 20 pages. 

THEOREM. If (S, < , 0, 1, +, -, *, r*) satisfies axioms 1-45, then there is an 
ordered field F extending S and a rounding function 0 mapping F onto S satisfying the 
conditions given on the second page of this paper. 
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